Russian Fireball Largest Ever Detected by CTBTO’s Infrasound Sensors

Map_17stations copyVienna, 18 February 2013 -  Infrasonic waves from the meteor that broke up over Russia’s Ural mountains last week were the largest ever recorded by the CTBTO’s International Monitoring System. Infrasound is low frequency sound with a range of less than 10 Hz. The blast was detected by 17 infrasound stations in the CTBTO’s network, which tracks atomic blasts across the planet.  The furthest station to record the sub-audible sound was 15,000km away in Antarctica.

The origin of the low frequency sound waves from the blast was estimated at 03:22 GMT on 15 February 2013.  People cannot hear the low frequency waves that were emitted but they were recorded by the CTBTO’s network of sensors as they travelled across continents.

“We saw straight away that the event would be huge, in the same order as the Sulawesi event from 2009. The observations are some of the largest that CTBTO’s infrasound stations have detected,” CTBTO acoustic scientist, Pierrick Mialle said.

ctbtoUntil last week, the bolide explosion above Sulawesi, Indonesia, in October 2009 was the largest infrasound event registered by 15 stations in the CTBTO’s network.

Infrasound has been used as part of the CTBTO’s tools to detect atomic blasts since April 2001 when the first station come online in Germany.  Data from the stations is sent in near real time to Vienna, Austria, for analysis at the CTBTO’s headquarters.  Both the raw and analysed data are provided to all Member States.

“We know it’s not a fixed explosion because we can see the change in direction as the meteorite moves towards the earth.  It’s not a single explosion, it’s burning, traveling faster than the speed of sound.  That’s how we distinguish it from mining blasts or volcanic eruptions.


“Scientist all around the world will be using the CTBTO’s data in the next months and year to come, to better understand this phenomena and to learn more about the altitude, energy released and how the meteor broke up,” Mialle said.

The infrasound station at Qaanaaq, Greenland — featured in this video — was among those that recorded the meteor explosion in Russia.  There are currently 45 infrasound stations in the CTBTO’s network that measure micropressure changes in the atmosphere generated by infrasonic waves.  Like meteor blasts, atomic explosions produce their own distinctive, low frequency sound waves that can travel across continents (see how).

Infrasound is one of four technologies (including seismic, hydroacoustic and radionuclide) the CTBTO uses to monitor the globe for violations of the Comprehensive Nuclear-Test-Ban Treaty that bans all nuclear explosions.

Seismic signals from the meteor were also detected at several Kazak stations close to the explosion and impact area.

Days before the meteor, on 12 February 2013, the CTBTO’s seismic network detected a seismic event in the Democratic People’s Republic of Korea (DPRK), which measured 4.9 in magnitude. Later that morning, the DPRK announced that it had conducted a nuclear test. The event was registered by 94 seismic stations and two infrasound stations in the CTBTO’s network.

1 comment to Russian Fireball Largest Ever Detected by CTBTO’s Infrasound Sensors

  • Harv

    Thank you for publishing this info. I was surprised twice, first to find it only here among my usual haunts, and second, that you would feature it on your site.

    More power to you, lady!

Austrian Flag
Bild aus dem Parlament
000_5151A
000_2207A

Advertising? Werbung? Click on the picture below. Klicken Sie auf das Bild unten. kawther [dot] salam [at] gmail [dot] com

000_8696b_edited-1

Advertising? Werbung? Click on the picture below. Klicken Sie auf das Bild unten. kawther [dot] salam [at] gmail [dot] com

Related Books


Support this site by buying these books at Amazon. Thank you!


000_4195A
000_4229A

Österreich News

000_1418A
Der Stephansplatz

Der Stephansplatz

Johann Strauß

Johann Strauß

000_8728

Volksgarten

Nikon (57)

Kurpark Oberlaa

000_2638A

Verbrechen in Israel

Add to Netvibes Creative Commons License